Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.224
Filtrar
2.
Parasit Vectors ; 17(1): 140, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500161

RESUMO

BACKGROUND: Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS: In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS: A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS: The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/prevenção & controle , Febre do Nilo Ocidental/epidemiologia , Filogenia , Projetos Piloto , Controle de Mosquitos , Mosquitos Vetores
3.
G Ital Nefrol ; 41(1)2024 Feb 28.
Artigo em Italiano | MEDLINE | ID: mdl-38426678

RESUMO

The West Nile Virus (WNV), an RNA arbovirus, has been transmitted by wild birds and conveyed by ticks and mosquitoes, with wide diffusion all over the world; it is not transmitted from human to human. It can give clinical symptoms only in a minority of infected subjects such as fever, headache, muscle tiredness, visual disturbances, drowsiness, convulsions and muscle paralysis; in the most serious cases even potentially fatal encephalitis. In the literature there are few reports on WNV infection in patients with kidney diseases: here we report our experience on two patients on peritoneal dialysis infected by WNV with a revision of the literature.


Assuntos
Culicidae , Nefropatias , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Febre do Nilo Ocidental/complicações , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/genética , Aves
4.
Immunol Cell Biol ; 102(4): 280-291, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421112

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes important for viral defense. West Nile virus (WNV) infection of the central nervous system (CNS) causes marked recruitment of bone marrow (BM)-derived monocytes, T cells and NK cells, resulting in severe neuroinflammation and brain damage. Despite substantial numbers of NK cells in the CNS, their function and phenotype remain largely unexplored. Here, we demonstrate that NK cells mature from the BM to the brain, upregulate inhibitory receptors and show reduced cytokine production and degranulation, likely due to the increased expression of the inhibitory NK cell molecule, MHC-I. Intriguingly, this correlated with a reduction in metabolism associated with cytotoxicity in brain-infiltrating NK cells. Importantly, the degranulation and killing capability were restored in NK cells isolated from WNV-infected tissue, suggesting that WNV-induced NK cell inhibition occurs in the CNS. Overall, this work identifies a potential link between MHC-I inhibition of NK cells and metabolic reduction of their cytotoxicity during infection.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/genética , Encéfalo , Células Matadoras Naturais , Linfócitos T
5.
J Virol Methods ; 326: 114893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360267

RESUMO

West Nile Virus (WNV) is an arthropod-borne virus that is spread through mosquito vectors. WNV emerged in the US in 1999 and has since become endemic in the US, causing the most domestically acquired arboviral disease in the country. Mosquito surveillance for WNV is useful to monitor arboviral disease burden over time and across different locations. RT-qPCR is the preferred method for WNV surveillance, but these methods are labor-intensive. The Panther Fusion System has an Open Access feature that allows for laboratory-developed tests (LDTs) to run on a fully automated system for nucleic acid extraction, RT-qPCR, and result generation. This study demonstrates the successful optimization of a WNV multiplex LDT (assay targets: ENV and NS1 genes) for high-throughput environmental surveillance testing of mosquito pool homogenates on the Panther Fusion System. Analytical sensitivity of the assay was 186 and 744 copies/PCR reaction for the ENV and NS1 targets, respectively. To assess the performance of this assay, a total of 80 mosquito pools were tested, including 60 previously tested pools and 20 spiked negative mosquito pools. Among the 60 previously tested specimens, the Panther Fusion WNV LDT demonstrated 100% positive and negative agreement with the CDC West Nile RT-qPCR assay. The Panther Fusion WNV LDT also detected all 20 spiked specimens. The Panther Fusion WNV LDT assay was successfully developed and optimized for high throughput testing with similar performance to the previously used CDC West Nile RT-qPCR assay.


Assuntos
Arbovírus , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/diagnóstico , Mosquitos Vetores
6.
Virus Res ; 343: 199340, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387694

RESUMO

Flaviviral RNA genomes are composed of discrete RNA structural units arranged in an ordered fashion and grouped into complex folded domains that regulate essential viral functions, e.g. replication and translation. This is achieved by adjusting the overall structure of the RNA genome via the establishment of inter- and intramolecular interactions. Translation regulation is likely the main process controlling flaviviral gene expression. Although the genomic 3' UTR is a key player in this regulation, little is known about the molecular mechanisms underlying this role. The present work provides evidence for the specific recruitment of the 40S ribosomal subunit by the 3' UTR of the West Nile virus RNA genome, showing that the joint action of both genomic ends contributes the positioning of the 40S subunit at the 5' end. The combination of structural mapping techniques revealed specific conformational requirements at the 3' UTR for 40S binding, involving the highly conserved SL-III, 5'DB, 3'DB and 3'SL elements, all involved in the translation regulation. These results point to the 40S subunit as a bridge to ensure cross-talk between both genomic ends during viral translation and support a link between 40S recruitment by the 3' UTR and translation control.


Assuntos
Flavivirus , Vírus do Nilo Ocidental , Vírus do Nilo Ocidental/genética , Regiões 3' não Traduzidas , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Flavivirus/genética , Genômica , RNA Viral/metabolismo , Replicação Viral
7.
PLoS Pathog ; 20(1): e1011880, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38271294

RESUMO

BACKGROUND: West Nile virus (WNV) outbreaks in birds, humans, and livestock have occurred in multiple areas in Europe and have had a significant impact on animal and human health. The patterns of emergence and spread of WNV in Europe are very different from those in the US and understanding these are important for guiding preparedness activities. METHODS: We mapped the evolution and spread history of WNV in Europe by incorporating viral genome sequences and epidemiological data into phylodynamic models. Spatially explicit phylogeographic models were developed to explore the possible contribution of different drivers to viral dispersal direction and velocity. A "skygrid-GLM" approach was used to identify how changes in environments would predict viral genetic diversity variations over time. FINDINGS: Among the six lineages found in Europe, WNV-2a (a sub-lineage of WNV-2) has been predominant (accounting for 73% of all sequences obtained in Europe that have been shared in the public domain) and has spread to at least 14 countries. In the past two decades, WNV-2a has evolved into two major co-circulating clusters, both originating from Central Europe, but with distinct dynamic history and transmission patterns. WNV-2a spreads at a high dispersal velocity (88km/yr-215 km/yr) which is correlated to bird movements. Notably, amongst multiple drivers that could affect the spread of WNV, factors related to land use were found to strongly influence the spread of WNV. Specifically, the intensity of agricultural activities (defined by factors related to crops and livestock production, such as coverage of cropland, pasture, cultivated and managed vegetation, livestock density) were positively associated with both spread direction and velocity. In addition, WNV spread direction was associated with high coverage of wetlands and migratory bird flyways. CONCLUSION: Our results suggest that-in addition to ecological conditions favouring bird- and mosquito- presence-agricultural land use may be a significant driver of WNV emergence and spread. Our study also identified significant gaps in data and the need to strengthen virological surveillance in countries of Central Europe from where WNV outbreaks are likely seeded. Enhanced monitoring for early detection of further dispersal could be targeted to areas with high agricultural activities and habitats of migratory birds.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogeografia , Europa (Continente)/epidemiologia , Surtos de Doenças
8.
J Infect Dis ; 229(1): 43-53, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-37368353

RESUMO

West Nile virus (WNV), an arthropod-borne flavivirus, can cause severe symptoms, including encephalitis, and death, posing a threat to public health and the economy. However, there is still no approved treatment or vaccine available for humans. Here, we developed a novel vaccine platform based on a classical insect-specific flavivirus (cISF) YN15-283-02, which was derived from Culicoides. The cISF-WNV chimera was constructed by replacing prME structural genes of the infectious YN15-283-02 cDNA clone with those of WNV and successfully rescued in Aedes albopictus cells. cISF-WNV was nonreplicable in vertebrate cells and nonpathogenic in type I interferon receptor (IFNAR)-deficient mice. A single-dose immunization of cISF-WNV elicited considerable Th1-biased antibody responses in C57BL/6 mice, which was sufficient to offer complete protection against lethal WNV challenge with no symptoms. Our studies demonstrated the potential of the insect-specific cISF-WNV as a prophylactic vaccine candidate to prevent infection with WNV.


Assuntos
Aedes , Flavivirus , Vacinas , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Camundongos , Humanos , Vírus do Nilo Ocidental/genética , Flavivirus/genética , Febre do Nilo Ocidental/prevenção & controle , Anticorpos Antivirais , Camundongos Endogâmicos C57BL
9.
Infect Dis (Lond) ; 56(3): 206-219, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160682

RESUMO

BACKGROUND: Vector-borne diseases like West Nile virus (WNV) pose a global health challenge, with rising incidence and distribution. Culex mosquitoes are crucial WNV vectors. Avian species composition and bird community diversity, along with vector communities, influence WNV transmission patterns. However, limited knowledge exists on their impact in southwestern Spain, an area with active WNV circulation in wild birds, mosquitoes, and humans. METHODS: To address this, we conducted a comprehensive study investigating the contributions of migratory and exotic bird species to WNV transmission and the influence of mosquito community composition. RESULTS: Analysing 1194 serum samples from 44 avian species, we detected WNV antibodies in 32 samples from 11 species, four for the first time in Europe. Migratory birds had higher WNV exposure likelihood than native and exotic species, and higher phylogenetic diversity in bird communities correlated with lower exposure rates. Moreover, in 5859 female mosquitoes belonging to 12 species, we identified WNV competent vectors like Cx. pipiens s.l. and the Univittatus subgroup. Birds with WNV antibodies were positively associated with competent vector abundance, but negatively with overall mosquito species richness. CONCLUSIONS: These findings highlight the complex interactions between bird species, their phylogenetics, and mosquito vectors in WNV transmission. Understanding these dynamics will help to implement effective disease control strategies in southwestern Spain.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Feminino , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Filogenia , Mosquitos Vetores , Aves , Anticorpos Antivirais
10.
J Clin Virol ; 170: 105633, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38103483

RESUMO

West Nile Virus (WNV) causes a serious public health concern in many countries around the world. Virus detection in pathological samples is a key component of WNV infection diagnostic, classically performed by real-time PCR. In outbreak situation, rapid detection of the virus, in peripheral laboratories or at point of care, is crucial to guide decision makers and for the establishment of adequate action plans to prevent virus dissemination. Here, we evaluate a Loop-mediated isothermal amplification (LAMP) tool for WNV detection. Amplifications were performed comparatively on extracted viral RNA and on crude samples using a classical thermal cycler and a portable device (pebble device). qRT-PCR was used as gold standard and two sets of urine samples (n = 62 and n = 74) were used to evaluate the retained amplification protocols and assess their sensitivity and specificity. RT-LAMP on RNA extracts and crude samples showed a sensitivity of 90 % and 87 %, respectively. The specificity was 100 % for extracts and 97 % for crude samples. Using the device, the RT-LAMP on extracted RNA was comparable to the gold standard results (100 % sensitivity and specificity) and it was a bit lower on crude samples (65 % sensitivity and 94 % specificity). These results show that RT-LAMP is an efficient technique to detect WNV. RT-LAMP provides a rapid, sensitive, high-throughput and portable tool for accurate WNV detection and has potentials to facilitate diagnostic and surveillance efforts both in the laboratory and in the field, especially in developing countries.


Assuntos
Vírus do Nilo Ocidental , Humanos , Vírus do Nilo Ocidental/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular , Sensibilidade e Especificidade , RNA Viral/genética
11.
Acta Trop ; 249: 107065, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926384

RESUMO

Since 2002, West Nile Virus (WNV) has been reported in 18 states in Mexico, either by PCR or serological testing. However, it is believed that the virus is present in more states. Only four states (out of 32) have reported confirmed human cases, and one state has serological evidence. In the country, WNV is present in mainly horses and birds, but its presence extends to crocodiles, felines, canines, swines, donkeys, caprines, antilopes, cattle, bats, and camelids. Positive mosquito species include Aedes and Culex spp. Different hypotheses have been proposed to explain the absence of WNV epidemics in Latin America. Since some regions of Mexico and the United States share ecological and climatic conditions, these hypotheses may not be sufficient to account for the absence of WNV outbreaks or epidemics. This paper discusses the proposed ideas and attempts to contextualize them for Mexico, particularly for the U.S.-Mexico border, where WNV infections have been reported in humans, horses, and mosquitoes. We propose that integration of urban ecology and entomology knowledge is needed to better understand the absence of WN cases in Mexico.


Assuntos
Aedes , Culex , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Cavalos , Gatos , Bovinos , Cães , Suínos , Vírus do Nilo Ocidental/genética , México/epidemiologia , Mosquitos Vetores
12.
Front Cell Infect Microbiol ; 13: 1275823, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053527

RESUMO

West Nile virus (WNV) and Japanese encephalitis virus (JEV) are emerging mosquito-borne flaviviruses causing encephalitis globally. No specific drug or therapy exists to treat flavivirus-induced neurological diseases. The lack of specific therapeutics underscores an urgent need to determine the function of important host factors involved in flavivirus replication and disease progression. Interleukin-6 (IL-6) upregulation has been observed during viral infections in both mice and humans, implying that it may influence the disease outcome significantly. Herein, we investigated the function of IL-6 in the pathogenesis of neurotropic flavivirus infections. First, we examined the role of IL-6 in flavivirus-infected human neuroblastoma cells, SK-N-SH, and found that IL-6 neutralization increased the WNV or JEV replication and inhibited the expression of key cytokines. We further evaluated the role of IL-6 by infecting primary mouse cells derived from IL-6 knockout (IL-6-/-) mice and wild-type (WT) mice with WNV or JEV. The results exhibited increased virus yields in the cells lacking the IL-6 gene. Next, our in vivo approach revealed that IL-6-/- mice had significantly higher morbidity and mortality after subcutaneous infection with the pathogenic WNV NY99 or JEV Nakayama strain compared to WT mice. The non-pathogenic WNV Eg101 strain did not cause mortality in WT mice but resulted in 60% mortality in IL-6-/- mice, indicating that IL-6 is required for the survival of mice after the peripheral inoculation of WNV or JEV. We also observed significantly higher viremia and brain viral load in IL-6-/- mice than in WT mice. Subsequently, we explored innate immune responses in WT and IL-6-/- mice after WNV NY99 infection. Our data demonstrated that the IL-6-/- mice had reduced levels of key cytokines in the serum during early infection but elevated levels of proinflammatory cytokines in the brain later, along with suppressed anti-inflammatory cytokines. In addition, mRNA expression of IFN-α and IFN-ß was significantly lower in the infected IL-6-/- mice. In conclusion, these data suggest that the lack of IL-6 exacerbates WNV or JEV infection in vitro and in vivo by causing an increase in virus replication and dysregulating host immune response.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Camundongos , Citocinas/metabolismo , Interleucina-6 , Febre do Nilo Ocidental/genética , Vírus do Nilo Ocidental/genética
13.
Euro Surveill ; 28(48)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-38037727

RESUMO

BackgroundWest Nile virus (WNV), found in Berlin in birds since 2018 and humans since 2019, is a mosquito-borne virus that can manifest in humans as West Nile fever (WNF) or neuroinvasive disease (WNND). However, human WNV infections and associated disease are likely underdiagnosed.AimWe aimed to identify and genetically characterise WNV infections in humans and mosquitoes in Berlin.MethodsWe investigated acute WNV infection cases reported to the State Office for Health and Social Affairs Berlin in 2021 and analysed cerebrospinal fluid (CSF) samples from patients with encephalitis of unknown aetiology (n = 489) for the presence of WNV. Mosquitoes were trapped at identified potential exposure sites of cases and examined for WNV infection.ResultsWest Nile virus was isolated and sequenced from a blood donor with WNF, a symptomatic patient with WNND and a WNND case retrospectively identified from testing CSF. All cases occurred in 2021 and had no history of travel 14 days prior to symptom onset (incubation period of the disease). We detected WNV in Culex pipiens mosquitoes sampled at the exposure site of one case in 2021, and in 2022. Genome analyses revealed a monophyletic Berlin-specific virus clade in which two enzootic mosquito-associated variants can be delineated based on tree topology and presence of single nucleotide variants. Both variants have highly identical counterparts in human cases indicating local acquisition of infection.ConclusionOur study provides evidence that autochthonous WNV lineage 2 infections occurred in Berlin and the virus has established an endemic maintenance cycle.


Assuntos
Culex , Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Berlim/epidemiologia , Estudos Retrospectivos , Europa (Continente) , Alemanha/epidemiologia
14.
Viruses ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140539

RESUMO

Due to globalisation and climate change, mosquito-borne pathogens are emerging in new areas on all continents, including Europe, which has recently faced outbreaks of dengue, chikungunya and West Nile fever. The present study complements previous investigations to evaluate the circulation of mosquito-borne viruses in Germany, with the aim of identifying potential vector species and risk areas. Mosquitoes collected from 2019 to 2021 and identified to species or species group level were screened for viruses of the families Flaviviridae, Peribunyaviridae and the genus Alphavirus of the family Togaviridae. In total, 22,528 mosquitoes were examined, thus providing the most comprehensive study on West Nile virus (WNV) circulation so far in the German mosquito population. Usutu virus (USUV) RNA was detected in six samples, Sindbis virus (SINV) RNA in 21 samples and WNV RNA in 11 samples. Samples containing RNA of USUV and WNV consisted of mosquitoes collected in the East German federal states of Brandenburg, Saxony and Saxony-Anhalt, while samples with RNA of SINV originated from more widespread locations. Although minimum infection rates have remained relatively low, the intensity of virus circulation appears to be increasing compared to previous studies. Continuous mosquito screening contributes to the early detection of the introduction and spread of mosquito-borne pathogens.


Assuntos
Culex , Culicidae , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , RNA Viral/genética , Mosquitos Vetores , Flavivirus/genética , Vírus do Nilo Ocidental/genética , Alemanha/epidemiologia
15.
Viruses ; 15(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38140614

RESUMO

West Nile Virus (WNV) is a mosquito vector-borne zoonosis with an increasing incidence in Europe that has become a public health concern. In Spain, although local circulation has been known for decades, until 2020, when a large outbreak occurred, West Nile Virus cases were scarce and mostly occurred in southern Spain. Since then, there have been new cases every year and the pathogen has spread to new regions. Thus, monitoring of circulating variants and lineages plays a fundamental role in understanding WNV evolution, spread and dynamics. In this study, we sequenced WNV consensus genomes from mosquito pools captured in 2022 as part of a newly implemented surveillance program in southern Spain and compared it to other European, African and Spanish sequences. Characterization of WNV genomes in mosquitoes captured in 2022 reveals the co-circulation of two WNV lineage 1 variants, the one that caused the outbreak in 2020 and another variant that is closely related to variants reported in Spain in 2012, France in 2015, Italy in 2021-2022 and Senegal in 2012-2018. The geographic distribution of these variants indicates that WNV L1 dynamics in southern Europe include an alternating dominance of variants in some territories.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/epidemiologia , Espanha/epidemiologia , Europa (Continente)/epidemiologia
16.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005878

RESUMO

Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Humanos , Mosquitos Vetores , Flavivirus/genética , Vírus do Nilo Ocidental/genética , Zika virus/fisiologia
17.
Front Cell Infect Microbiol ; 13: 1279147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38035335

RESUMO

Introduction: West Nile Virus (WNV) is a zoonotic flavivirus transmitted by mosquitoes. Especially in the elderly or in immunocompromised individuals an infection with WNV can lead to severe neurological symptoms. To date, no human vaccine against WNV is available. The Envelope (E) protein, located at the surface of flaviviruses, is involved in the invasion into host cells and is the major target for neutralizing antibodies and therefore central to vaccine development. Due to their close genetic and structural relationship, flaviviruses share highly conserved epitopes, such as the fusion loop domain (FL) in the E protein, that are recognized by cross-reactive antibodies. These antibodies can lead to enhancement of infection with heterologous flaviviruses, which is a major concern for potential vaccines in areas with co-circulation of different flaviviruses, e.g. Dengue or Zika viruses. Material: To reduce the potential of inducing cross-reactive antibodies, we performed an immunization study in mice using WNV E proteins with either wild type sequence or a mutated FL, and WNV E domain III which does not contain the FL at all. Results and discussion: Our data show that all antigens induce high levels of WNV-binding antibodies. However, the level of protection against WNV varied, with the wildtype E protein inducing full, the other antigens only partial protection. On the other hand, serological cross-reactivity to heterologous flaviviruses was significantly reduced after immunization with the mutated E protein or domain III as compared to the wild type version. These results have indications for choosing antigens with the optimal specificity and efficacy in WNV vaccine development.


Assuntos
Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Animais , Camundongos , Idoso , Vírus do Nilo Ocidental/genética , Proteínas do Envelope Viral/genética , Imunização , Anticorpos Antivirais , Proteínas Recombinantes/genética
18.
Virology ; 588: 109902, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856911

RESUMO

West Nile virus (WNV) causes encephalitis in human and animals. WNV is phylogenetically classified into at least five distinct genetic lineages with different pathogenicity. The pathogenesis of West Nile encephalitis is affected by ubiquitin accumulation in infected cells, but the mechanism is unknown. In this study, the association between ubiquitin accumulation and WNV pathogenicity was investigated. Ubiquitin accumulation was detected in cells infected with NY99 strain belonging to lineage-1, but not FCG and Zmq16 strains belonging to lineage-2. Substitution of the Finger and Palm sub-domains of NS5 from lineage-1 to -2 decreased ubiquitin accumulation and viral replication. Furthermore, the survival rate was increased, and viral replication and ubiquitin accumulation in the brain were attenuated, in mice inoculated with the substituted WNV compared with lineage-1 WNV. Therefore, the intracellular ubiquitin accumulation induced by the Finger and Palm sub-domains of NS5 is linked to the differences in pathogenicity among WNV lineages.


Assuntos
Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Camundongos , Vírus do Nilo Ocidental/genética , Ubiquitina , Encéfalo , Replicação Viral/genética
19.
Cytokine ; 172: 156383, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801852

RESUMO

BACKGROUND: Japanese Encephalitis Virus (JEV) and West Nile Viruses (WNV) are neurotropic flaviviruses which cause neuronal death and exaggerated glial activation in the central nervous system. Role of host long non coding RNAs in shaping microglial inflammation upon flavivirus infections has been unexplored. This study attempted to decipher the role of lncRNA Gm20559 in regulating microglial inflammatory response in context of flaviviruses. METHODS: Antisense oligonucleotide LNA Gapmers designed against lncRNA Gm20559 and non-specific site (negative control) were used for Gm20559 knockdown in JEV and WNV-infected N9 microglial cells. Upon establishing successful Gm20559 knockdown, expression of various proinflammatory cytokines, chemokines, interferon-stimulated genes (ISGs) and RIG-I were checked by qRT-PCR and cytometric bead array. Western Blotting was done to analyse the phosphorylation level of various inflammatory markers and viral non-structural protein expression. Plaque Assays were employed to quantify viral titres in microglial supernatant upon knocking down Gm20559. Effect of microglial supernatant on HT22 neuronal cells was assessed by checking expression of apoptotic protein and viral non-structural protein by Western Blotting. RESULTS: Upregulation in Gm20559 expression was observed in BALB/c pup brains, primary microglia as well as N9 microglia cell line upon both JEV and WNV infection. Knockdown of Gm20559 in JEV and WNV-infected N9 cell led to the reduction of major proinflammatory cytokines - IL-1ß, IL-6, IP-10 and IFN-ß. Inhibition of Gm20559 upon JEV infection in N9 microglia also led to downregulation of RIG-I and OAS-2, which was not the case in WNV-infected N9 microglia. Phosphorylation level of P38 MAPK was reduced in case of JEV-infected N9 microglia and not WNV-infected N9 microglia. Whereas phosphorylation of NF-κB pathway was unchanged upon Gm20559 knockdown in both JEV and WNV-infected N9 microglia. However, treating HT22 cells with JEV and WNV-infected microglial supernatant with and without Gm20559 could not trigger cell death or influence viral replication. CONCLUSION: Knockdown studies on lncRNA Gm20559 suggests its pivotal role in maintaining the inflammatory milieu of microglia in flaviviral infection by modulating the expression of various pro-inflammatory cytokines. However, Gm20559-induced increased microglial proinflammatory response upon flavivirus infection fails to trigger neuronal death.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Flavivirus , RNA Longo não Codificante , Vírus do Nilo Ocidental , Humanos , Microglia/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/genética , Inflamação/genética , Inflamação/metabolismo , Citocinas/metabolismo , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/metabolismo
20.
J Vector Borne Dis ; 60(3): 225-237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37843232

RESUMO

West Nile virus (WNV) is a rapidly spreading mosquito-transmitted zoonotic flavivirus. Mosquitoes belonging to the genus Culex are incriminated as the principal vectors of the virus, which causes West Nile fever (WNF) in humans. Manifestations of WNF include a mild, self-limiting, flu-like illness, which in severe cases (rare) may progress to encephalitis, resulting in life-threatening consequences. WNV is geographically distributed worldwide, covering Africa, the Americas, Europe, and Asia (except Antarctica). The virus exists in a bird-mosquito transmission cycle in nature, with humans and horses as incidental/accidental hosts. The virus can infect a large variety of hosts worldwide, i.e., about 300 birds and around 70 different mosquito species belonging to several genera. For a long time, it was believed that WNV was not highly virulent and caused only mild infection globally. However, the recent frequent and increasing incidence of clinically severe WNV infections, such as encephalitis in humans and horses with significant mortality, has been reported in the Americas, Europe, and several East Asian countries. The emergence of lineage 2 strains endemic to Africa, with epidemic potential in humans and horses in Europe, is considered a serious global health concern. Although WNV is known to circulate in India since 1952, its re-emergence with severe neuro-invasive pathogenic potential in humans in Assam, Kerala, West Bengal and Tamil Nadu states signals urgent efforts to understand the dynamics of circulating strains with regard to its vector, hosts, and environment. This could be done by prioritizing "One Health" approach for developing effective preventive and control strategies. In view of the global interest, we present an overview of the circulating genetic lineages of WNV in India in comparison with the global scenario. In addition, we stress on holistic approaches of "One Health" strategy as the current need of the hour for designing effective preventive and control strategies in the country.


Assuntos
Culicidae , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Cavalos , Vírus do Nilo Ocidental/genética , Índia/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterinária , Aves
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...